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Abstract The transmittance of solar radiation in the oceanic water column plays an important role in
heat transfer and photosynthesis, with implications for the global carbon cycle, global circulation, and cli-
mate. Globally, the transmittance of solar radiation in the visible domain (�400–700 nm) (TRVIS) through the
water column, which determines the vertical distribution of visible light, has to be based on remote sensing
products. There are models centered on chlorophyll-a (Chl) concentration or Inherent Optical Properties
(IOPs) as both can be derived from ocean color measurements. We present evaluations of both schemes
with field data from clear oceanic and from coastal waters. Here five models were evaluated: (1) Morel
and Antoine (1994) (MA94), (2) Ohlmann and Siegel (2000) (OS00), (3) Murtugudde et al. (2002) (MU02),
(4) Manizza et al. (2005) (MA05), and (5) Lee et al. (2005) (IOPs05), where the first four are Chl-based and the
last one is IOPs-based, with all inputs derived from remote sensing reflectance. It is found that the best
performing model is the IOPs05, with Unbiased Absolute Percent Difference (UAPD) �23%, while Chl-based
models show higher uncertainties (UAPD for MA94: �54%, OS00: �133%, MU02: �56%, and MA05: �39%).
The IOPs-based model was insensitive to the type of water, allowing it to be applied in most marine envi-
ronments; whereas some of the Chl-based models (MU02 and MA05) show much higher sensitivities in
coastal turbid waters (higher Chl waters). These results highlight the applicablity of using IOPs products for
such applications.

1. Introduction

The amount of the solar radiation in the visible domain (EVIS, 400–700 nm) that reaches deeper depths
in the ocean is a key determinant of marine primary production, ocean heating, and vertical mixing
(Ohlmann & Siegel, 2000; Schneider et al., 1996). Mathematically, the vertical distribution of EVIS can be
described as:

EVIS zð Þ5EVIS 0ð Þ � TRVIS zð Þ (1)

with EVIS(0) representing the value just below the sea surface and TRVIS the transmittance of EVIS from sur-
face to depth (z). Symbols used in this work are presented in Table 1.

EVIS(0) is determined by sun position, atmospheric properties, and surface roughness (Frouin et al., 1989)
which is beyond the scope of this effort. TRVIS(z), on the other hand, is controlled by properties of water mol-
ecules and dissolved and suspended substances in the water. Decades have been spent to easily and accu-
rately describe TRVIS(z). Generally, it can be expressed as:

TRVIS zð Þ5x � e2y�z (2)

with x a parameter related to EVIS as a fraction of the total downwelling solar radiation and y a parameter
related to water properties.

About a half century ago, the attenuation of EVIS with increasing depth was crudely estimated based on Jer-
lov water types (Jerlov, 1968), with an e-folding depth assigned for each water type. In the 1980s, after the
launch of the Coastal Zone Color Scanner (CZCS), efforts shifted to developing models using ocean color
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products to generate seamless distributions of EVIS in the upper water column. In general, the models
designed for this estimation can be classified as chlorophyll-a (Chl) concentration based or Inherent Optical
Properties (IOPs) based, as both can be adequately derived from the measurements of ocean color. These
TRVIS models were evaluated previously using inputs derived from numerical simulations and under these
circumstances showed good performance (Lee et al., 2005; Ohlmann & Siegel, 2000). However, for the
global oceans, the evaluations of such models using inputs derived solely from ocean color remote sensing
are scarce, even though such evaluations are key for the application of satellite ocean color remote sensing.

Note that some of these models are now included in dynamic ocean circulation models to hindcast or fore-
cast stratification of surface waters and heat exchanges between the ocean and atmosphere and between
surface and deeper ocean horizons (e.g., Liang & Wu, 2013). It is thus important and necessary to character-
ize the robustness of such models in estimating TRVIS(z) when the inputs are derived from ocean color. Few
widely applied models are tested in this work, based either in Chl or IOPs. The Chl-based models are: Morel
and Antoine (1994) (MA94), Ohlmann and Siegel (2000) (OS00), Murtugudde et al. (2002) (MU02), and Man-
izza et al. (2005) (MA05). The only IOP-based model evaluated is Lee et al. (2005) (IOPs05). The objective of
this work is to evaluate the performance of these models using in situ measurements collected in both oce-
anic and coastal waters. Specifically, we ask two questions. First, when only ocean color measurements are
available (represented by remote sensing reflectance, Rrs), can the models provide a robust estimate of
TRVIS? Second, which model would in general provide a more reliable estimate for both oceanic and coastal
waters?

2. Brief Description of the Models

All the models evaluated here consider exponential decay of solar radiation, but MA94, OS00, and MA05
consist of a form of multiple exponential terms. Key features of these models are highlighted below.

Table 1
Symbols, Description, and Units

Symbol Definition Units

a Absorption coefficient m21

Ai OS00 coefficients for solar transmission parameterizations Dimensionless
bb Backscattering coefficient m21

C124 OS00 linear regression coefficients for estimation of Ai and Ki

Chl Chlorophyll-a concentration mg m23

d024 MA94 coefficients in the polynomic form to estimate V122 and z122 parameters
eBand MA05 parameters, either for blue/green or red band Dimensionless
Ed Downwelling irradiance measured in water lW cm22

Êd Downwelling irradiance measured in water corrected for sky variations lW cm22

ES Downwelling irradiance measured above surface lW cm22

K1, K2 IOPs05 contributors for the attenuation coefficient at greater
depths and subsurface, respectively

m21

KBand MA05 attenuation coefficient either for the blue/green or red bands m21

Ki OS00 exponents for solar transmission parameterizations m21

KVIS Attenuation coefficient for VIS radiation m21

KW Attenuation coefficient for pure water m21

Rrs Remote sensing reflectance sr21

V122 MA94 partitioning factors Dimensionless
TRIR Transmittance in the infrared domain Dimensionless
TRtot Transmittance in the whole solar spectrum Dimensionless
TRVIS Transmittance in the visible domain Dimensionless
z Depth m
z1% Depth where EVIS is 1% of its value at surface m
z122 MA94 attenuation lengths m
k Wavelength nm
hS Solar zenith angle above surface 8

hw Solar zenith angle below surface 8

f022,a022,v022 IOPs05 parameters for KVIS Dimensionless
vk MA05 parameters, either for blue/green or red bands m22 mg Chl m23
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2.1. Morel and Antoine (1994): MA94
Morel and Antoine (1994) developed a TRVIS model as a sum of two exponential functions:

TRVIS Chl; zð Þ5V1�e2z=z1 1V2 � e2z=z2 (3)

where V1;2 and z1;2 are the empirical model parameters of the two terms and they are further described as
polynomial functions of Chl

V122; z1225d01d1 � X1d2�X21d3 � X31d4�X4 (4)

X5log Chlð Þ (5)

Here d0 2 4 are the model coefficients determined empirically from simulations for uniform pigment profiles
(Morel & Antoine, 1994). MA94 splits the EVIS into two terms without an explict separation of the two spec-
tral regions, but where the first and second terms are for longer and shorter wavelengths, respectively. And,
V11V251:0.

2.2. Murtugudde et al. (2002): MU02
MU02 uses a single exponential term for TRVIS

TRVIS Chl; zð Þ5e2z�KVIS (6)

where KVIS (conventionally terms as KPAR) corresponds to the attenuation coefficient of radiation in the visi-
ble domain and is expressed as:

KVIS50:02710:0518 � Chl0:428 (7)

However, although it was mentioned that this KVIS was based on Morel (1988), KVIS is actually described in
Morel (1988) as equation (8):

KVIS50:121 � Chl0:428 (8)

Therefore, we evaluated both schemes (equations (7) and (8)) of KVIS, and termed results for KVIS of equation
(8) as MU02b.

2.3. Manizza et al. (2005): MA05
Similar to MA94, MA05 also partitions the EVIS transmission into two exponential terms, but then, it divides
the full spectrum into two explicit spectral ranges: blue/green (400–599 nm) and red (600–700 nm), with
TRVIS as:

TRVIS Chl; zð Þ50:5 � e2KBLUE �z10:5 � e2KRED�z (9)

KBand5KW;Band1vBand�ChleBand (10)

where KBLUE and KRED are the attenuation coefficients in the blue/green and red bands, respectively, and are
also functions of Chl. KW;Band, vBand, and eBand are the model coefficients.

2.4. Ohlmann and Siegel (2000): OS00
The transmission model of Ohlmann and Siegel (2000) is more complicated than the previous Chl-based
models. Specifically, OS00 uses not only Chl as input but also the above-surface solar zenith angle (hS)
(equations (11) and (12)). In addition, OS00 models the transmission for the entire solar radiation (TRtot,
�250–2,500 nm) as the sum of four exponential functions

TRtot Chl; z; hSð Þ5
X4

i51
Ai � e2Ki�z (11)

with Ai and Ki modeled as functions of Chl

Ai; Ki5C1 � Chl1C3 � cos hSð ÞÞ21
1C4

�
(12)

Here C1–4 are model coefficients that were determined empirically from numerical simulations (Ohlmann &
Siegel, 2000). In addition, OS00 considered the impacts of clouds, but here we used the model of clear sky
only.
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Since here the focus is the transmission of EVIS, the above model is converted to TRVIS as:

TRVIS Chl; z; hSð Þ5 TRtot2TRIRð Þ=0:47 (13)

In equation (13), the value 0.47 represents the fraction of the solar radiation corresponding to the visible
domain, i.e., �47% of the total solar radiation (Frouin et al., 1989). TRIR is the transmittance for solar radia-
tion in the �700–2,500 nm range and approximated as that in Morel and Antoine (1994)

TRIR5e2 3:75� z
cos hwð Þð Þ (14)

where hw is the solar zenith angle below sea surface.

2.5. Lee et al. (2002): IOPs05
The transmittance of solar radiation is determined by optical properties (absorption and scattering coeffi-
cients). Because the conversion coefficients between Chl and IOPs are spatially and temporally dependent,
Lee et al. (2005) developed a transmission model centered on IOPs in order to avoid the conversion from
Rrs to Chl, and then from Chl to optical properties.

Specifically, IOPs05 models TRVIS as

TRVIS IOP; z; hSð Þ5e2KVIS IOP;z;hSð Þ�z (15)

where KVIS is modeled as a function of depth and IOPs,

KVIS IOP; z; hSð Þ5K1 IOP; hSð Þ1 K2 IOP; hSð Þ
11zð Þ0:5

(16)

K1 IOP; hSð Þ5 v01v1 � a 490ð Þð Þ0:51v2 � bb 490ð Þ
h i

11a0 � sin hSð Þð Þ (17)

K2 IOP; hSð Þ5 f01f1 � a 490ð Þ1f2 � bb 490ð Þ½ � a11a2 � sin hSð Þð Þ (18)

where a(490) and bb(490) are the absorption and backscattering coefficients at 490 nm, with v0 2 2, a0 2 2;

and f0 2 2 derived empirically from numerical simulations (Lee et al., 2005).

3. Data Used for TRVIS Evaluation

3.1. In Situ Data Collection
Two in situ data sets were included in this work covering conditions ranging from extremely clear oceanic
to turbid coastal waters. One was obtained during NOAA Visible Infrared Imaging Radiometer Suite (VIIRS)
validation cruises (VIIRS data set) and the other during the BIogeochemistry and Optics South Pacific Experi-
ment (BIOSOPE data set).

The VIIRS cruises were conducted in three consecutive years: VIIRS-2014 (11–20 November), VIIRS-2015
(2–13 December), and VIIRS-2016 (14–19 October). The stations of these cruises were located mainly in
coastal waters, encompasing waters in the North Atlantic Ocean and Bahamas (Figure 1). The measure-
ments were taken during different environmental conditions, such as sea state, sky condition, and hS

(42–748) as well as in waters with different Chl concentrations (ranging from �0.2 to 11.4 mg m23, esti-
mated from in situ Rrs with the NASA algorithm) and IOPs properties. A HyperPro free-falling optical profiler
was used to measure hyperspectral downwelling irradiance (Ed, lW cm22 nm21) between 350 and 800 nm
throughout the water column. A total of 35 stations collected during these VIIRS cruises were applicable for
this effort, with profiling depths down to �17 m. Additionally, above-surface hyperspectral remote sensing
reflectance (Rrs(k), sr21) was obtained using a floating HyperPro radiometer system, adapted with a Skylight
Blocking Apparatus (SBA system, Lee et al., 2013a). The HyperPro and SBA systems were deployed at a mini-
mum distance of 20 m from the operating boat to avoid any contamination from the ship in the measure-
ments. SBA recorded data for 5–10 min at each station in the same spectral range as the profiling HyperPro
radiometer (350–800 nm). Measurements with a tilt greater than 58 were excluded. Derivation of Rrs(k) from
the SBA scheme followed the procedure detailed in Lee et al. (2013a) and Wei et al. (2015).

The BIOSOPE cruise was carried out during the austral summer of 2004 (3 November to 10 December). This
cruise covered waters from the South Pacific Gyre to coastal waters in the Continental Shelf of Chile. Ed
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profiles were measured using a HyperPro free-falling optical profiler. Because the waters were very clear,
the profiles were much deeper (as deep as 193 m). The measurements were taken between 9:00 and 16:00
local time, with hS in a range of 7–488. Rrs(k) was derived from the HyperPro measurements using the Pro-
Soft software. A total of 22 stations were applicable for this effort.

3.2. Processing of Hyperspectral Profiling Measurements for TRVIS

It is critical to obtain field measurements of TRVIS data that is accurate as possible for the evaluation of the
various schemes for TRVIS estimation from remote sensing. The derivation of in situ TRVIS consisted of several
sequential steps (see Figure 2). Specifically,

1. Ed profiles were processed following the recommendations in the NASA protocols (NASA, 2003).
2. In order to remove cloud effects, the normalized Ed (Êd(k, z)) was estimated as follows:

Êd k; zð Þ5 Ed k; z; tzð Þ � ES k; tið Þ
ES k; tzð Þ (19)

where ES corresponds to the downwelling irradiance measured above-water, ti corresponds to the time
when the profiling HyperPro radiometer is at the surface and tz is the profiling HyperPro radiometer time at
depth z.

Figure 1. (a) Location of the stations in a global context defined during the (b) VIIRS Cal-Val cruises and (c) BIOSOPE cruise.
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3. Êd k; zð Þ profiles were very noisy, especially in the first few meters, typically a result of the wave focusing
effect (Wei et al., 2014; Zaneveld et al., 2001; Zibordi et al., 2004). The noise was uncorrelated between
bands, profiles, and stations. In our data processing, for every cast, Êd k; zð Þ profiles of every band were
visually inspected and outliers of Êd at depth were removed. Subsequently, a moving average filter was
used to smooth the profiles.

4. The smoothed profiles were used to estimate the normalized downwelling irradiance measured below
surface (Êd k; 0ð ÞÞ from the linear fit between ln Êd k; zð Þ and z (Smith & Baker, 1984, 1986).

5. Both Êd k; 0ð Þ and Êd k; zð Þ were integrated spectrally over the 400–700 nm range to produce Êd VISð Þ.
6. TRVIS for each cast was subsequently calcualted as Êd VIS; zð Þ=Êd VIS; 0ð Þ.
7. Finally, if there were multiple casts, TRVIS of a station was an average of the transmittance obtained from

each cast.

3.3. Input Properties for TRVIS Estimations
In situ Rrs(k) was used to model TRVIS when using the Chl or the IOPs method. Chl was estimated applying
the ChlOCI algorithm of Hu et al. (2012). IOPs values (a(490) and bb(490)) were calculated by version 6 of the
Quasi-Analytical Algorithm (QAA v6) (Lee, 2014; Lee et al., 2002). For this derivation, Raman correction was
implemented following the method described in Lee et al. (2013b).

3.4. Uncertainty Analyses
TRVIS was evaluated at 1 m intervals for all of the stations and for values of in situ TRVIS> 0.001 (0.1%). TRVIS

of deeper depths is associated with higher uncertainties so was excluded in such evaluations. Several statis-
tical measures were employed to evaluate the differences between in situ and calculated TRVIS for every
model: Unbiased Percent Difference (UPD) (equation (20)), Unbiased Absolute Percent Difference (UAPD)
(equation (21)), Root Mean Square Difference (RMSD) (equation (22)), and coefficient of determination (R2)

UPD %ð Þ52 � xmod2xmeað Þ= xmod1xmeað Þ � 100 (20)

UAPD %ð Þ52 � j xmod2xmeað Þj= xmod1xmeað Þ � 100 (21)

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xmod2xmeað Þ2

N

s
(22)

where xmod and xmea represent the TRVIS values derived from models and measured in situ, respectively.

Figure 2. Flowchart showing the data processing applied to obtain modeled and in situ TRVIS.
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4. Results

Estimated TRVIS values using either IOPs or Chl as inputs, which are standard products in the ocean color
remote sensing, were compared with in situ TRVIS values. A summary of these comparisons can be found in
Table 2 and Figure 3. Not surprisingly, due to different mathematical functions and model coefficients, there
are also large differences in the performances among the Chl-based models, at least for this data set. Con-
sidering all the samples, we observe that:

1. For TRVIS in a range of �100% (near surface) to 0.1% (deeper depths), it is found that MA94 and MA05
performed best among the Chl-based models. Statistically, the two models had UAPD values of 54.1%
and 38.9%, and root mean square differences (RMSD) of 0.058 and 0.043, respectively. MA94 tended to
underestimate TRVIS (UPD, 242.9%); while MA05 showed an even lower underestimation of TRVIS (UPD,
29%), while the dispersion of the modeled TRVIS values was not depth dependent. These results high-
light the importance of using multiple exponential functions for the description of TRVIS, if the attenua-
tion coefficient for each exponential function is kept as a constant vertically. This is fundamentally
because the attenuation coefficient of water is spectrally dependent and different spectral bands are
associated with different relationships with the optically active constituents in water.

2. OS00 and MU02 showed poorer performance, considering both had high UAPD (132.7% and 55.5%,
respectively) and high RMSD values (0.081 and 0.116, respectively). These two models presented differ-
ent patterns in the predicted TRVIS values. On average, OS00 significantly underestimated TRVIS (UPD,
2128.3%) but it overestimated TRVIS for the highest TRVIS values (shallowest depths) and presented the
highest dispersion for TRVIS values between �0.1 and 0.6. MU02, on the contrary, displayed a hyperbolic
behavior with maximum deviation from the 1:1 line for intermediate TRVIS values (between �0.2 and
0.8). Even though the mean UAPD was close to 0, the UAPD value was much higher compared to MA05.
This shows that there was a compensation between positive and negative UAPD values when the aver-
age was calculated. MU02 tended to overestimate TRVIS for high values and underestimated TRVIS for val-
ues lower than 0.2 in clear waters. This is actually expected when TRVIS is expressed as a single
exponential function along with a vertically constant KVIS (Lee, 2009). This is because KVIS used for the
development of the empirical relationships were generally calculated between the surface and a depth
where EVIS is close to 1% of the surface value (z1%), and this KVIS is significantly smaller than KVIS above
z1% for oceanic waters (Lee, 2009). Therefore, an overestimation of TRVIS will result when KVIS of smaller
values are used (between surface and a much deeper depth).

Figure 3d shows the comparison of TRVIS from MU02b with in situ TRVIS when KVIS 5 0.121 Chl0.428 was
employed. MU02b showed a slightly worse performance than MU02, with UAPD of 70.0% and had signifi-
cant overestimations. Again, this overestimation is due to the fact that KVIS between the surface and z1% is
generally smaller than KVIS from a shallower depth range (Lee, 2009).

1. IOPs05 exhibited the best performance among the models evaluated here, with the lowest UAPD
(22.8%), lowest RMSD (0.022), and lowest dispersion (highest R2) between predicted and measured TRVIS

values. In particular, the performances for low Chl or high Chl waters were nearly the same, i.e., it is nearly
universally applicable. It is recalled that, on the contrary of the previous tested models, in this model
TRVIS is derived directly from optical properties, such as absorption and backscattering. Its good perfor-
mance derives then from two important factors: (i) KVIS in IOPs05 is a function of depth as highlighted in

Table 2
Coefficients to Evaluate Model Uncertainties: R2, Mean Unbiased Percent of Difference (UPD, in %), Range and Mean
of Unbiased Absolute Percent of Difference (UAPD, in %) and Root Mean Square Difference (RMSD)

R2 Mean UPD (%) Range UAPD (%) Mean UAPD (%) RMSD

MA94 0.96 242.9 0–161.3 54.1 0.058
OS00 0.90 2128.3 0–199.9 132.7 0.081
MU02 0.91 20.9 0–190.2 55.5 0.116
MU02b 0.94 68.5 0–174.4 70.0 0.137
MA05 0.95 29.0 0–166.8 38.9 0.043
IOPs05 0.99 1.6 0–152.8 22.8 0.022

Note. These coefficients were evaluated for in situ TRVIS> 0.001.
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Lee et al. (2005) and Lee (2009). (ii) This KVIS is modeled as a function of IOPs, not Chl, thus it avoids the
uncertainties associated with the conversion between biological and optical properties such as the spe-
cific absorption coefficient of chlorophyll or phytoplankton (Bricaud et al., 1995). Note that when KVIS is
modeled as a function of Chl, inevitably, there will be assumptions in the relationships between IOPs and
Chl, which vary spatially and temporally, but these assumed relationships do not necessarily match
waters of a specific location or time.

2. When the distribution of UAPDs was analyzed, it was found that around 75% of the TRVIS values pre-
dicted by IOPs05 were within 30% of in situ TRVIS (Figure 4). MA05 displayed the best performance
among the Chl-based models, with around 41% of the stations having uncertainties within 30%. MA94
presented errors up to 30% in around 33% of the cases while for MU02 uncertainties were up to 30% in
27% of the cases. The poorest performances were exhibited by OS00 and MU02b, with differences higher
than 100% in 68% and 18% of the cases, respectively.

The Chl-based models generally assume that the variation of light attenuation can be modeled as a function
of Chl, where all the active optical properties co-vary with phytoplankton, i.e., the so-called ‘‘Case 1’’ waters.

Figure 3. Calculated TRVIS versus measured TRVIS from in situ data. TRVIS derived from different models are displayed:
(a) MA94, (b) OS00, (c) MU02, (d) MU02b, (e) MA95, and (f) IOPs05. Each data set was divided into TRVIS estimated in
waters with Chl< 1 mg m23 (light blue dots) and Chl> 1 mg m23 (red dots).
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Here there was not enough information to evaluate which stations corresponded to the ‘‘Case 1’’ category.
Therefore for further analysis, the in situ data set was divided into two groups with one group for
Chl> 1 mg m23 (13 stations) and the other group for Chl< 1 mg m23 (44 stations). It was found that (see
Figure 3 and Table 3):

1. The Chl-based models showed a systematic overestimation of TRVIS for high Chl waters. For low Chl
waters, MA94 slightly underestimated TRVIS while MA05 provided the best results among the Chl-based
schemes. MA94 and OS00 actually performed better for higher Chl waters than lower Chl waters. The rea-
sons behind this contrast in performance are not clear. In the case of OS00, it could be due to its forma-
tion of multiple exponential functions and a large number of model parameters. The MA05 clearly

performed better for low Chl waters than higher Chl waters. One
possible reason is that the higher Chl waters (which generally are
coastal for this data set) likely encountered contributions from col-
ored dissolved organic matter or suspended sediments that cannot
be well described from the empirically derived Chl.

2. The IOPs05 model, however, generally showed no dependence on
the range of Chl, although it appears that there was an overestima-
tion (up to �20%) of TRVIS when TRVIS was in the �0.4–0.6 range
for lower Chl waters. This will require further study to understand
the underlying reasons. Generally, for both low and high Chl
groups the mean UAPD for IOPs05 were �23–25%. Again, these
comparisons demonstrate the advantages of using IOPs to model
and predict the vertical distribution of EVIS in the upper water
column.

Figure 4. Frequency of the Unbiased Absolute Percent Difference (UAPD, %) for the evaluated TRVIS models: (a) MA94,
(b) OS00, (c) MU02, (d) MU02b, (e) MA95, and (f) IOPs05.

Table 3
Absolute Unbiased Percent Difference (UAPD, in %), Between In Situ TRVIS and
Calculated TRVIS From Different Models

Mean UAPD Mean UAPD Mean UAPD
All stations Chl< 1 mg m23 Chl> 1 mg m23

MA94 54.1 53.4 27.5
OS00 132.7 136.5 31.9
MU02 55.5 53.6 106.7
MU02b 70.0 69.3 69.2
MA05 38.9 38.0 57.1
IOPs05 22.8 22.7 25.0

Note. Included are estimations for the whole data set (all stations) and for
stations grouped according to Chl (1 mg m23>Chl> 1 mg m23).
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All of these evaluations and comparisons indicate that (1) the way of modeling TRVIS is important (e.g., verti-
cally constant KVIS versus vertically varying KVIS; one exponential term versus multiple exponential terms)
and (2) it is more robust to estimate TRVIS based on IOPs, rather than based on Chl, as Chl is just one of the
active components that can affect the optical properties of bulk water.

Because ocean circulation models calculate solar radiation to specific depths in the upper water column
(Sweeney et al., 2005), we also evaluated the model performance in some discrete depths (at 1, 5, 10, 15,
20, 30, 40, and 50 m, respectively), with TRVIS values limited to greater than 0.001 (Figure 5). Again, while
models based on Chl (even for Chl< 1 mg m3) could have many estimations of TRVIS with an uncertainty
more than 50% (especially OS00 and MU02), uncertainties by IOPs05 were generally less than 50% for all
waters and depths. These results imply that the modeled upper water heating and dynamics based on
remotely estimated Chl should be revised.

Figure 5. UAPD (%) of the TRVIS derived from different models as a function of depth (z, m): (a) MA94, (b) OS00, (c) MU02,
(d) MU02b, (e) MA95, and (f) IOPs05. Each data set was divided into UAPD estimated in waters with Chl< 1 mg m23

(yellow dots) and Chl> 1 mg m23 (green dots).
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5. Discussion

In this work, for the first time we carried out a systematic evaluation regarding the estimation of TRVIS when
inputs for such models are only available from ocean color remote sensing, a route to apply these models
to global waters. At least for this data set, the IOPs05 model performs better than other models evaluated. It
has the lowest mean UAPD (around 23%) and the lowest RSMD. Around 75% of the cases have differences
compared with in situ measurements within 30% and are insensitive to high Chl levels, as often occur in
coastal waters. Comparing the performances among the Chl-based models, looking at the mean, range, and
frequency of the UAPD, the best performance was exibited by the MA94 and MA05, which split the visible
spectrum into two regions with two exponential terms to estimate TRVIS. Models adopted as MU02, with a
single exponential function for the whole visible spectrum along with a vertically constant KVIS, did not per-
form as well when describing the vertical distribution of EVIS in the water column. Note that among the TRVIS

models evaluated, the complexity and computational efficiency are not significantly different, and there is
no relationship between complexity and performance.

In this work, in situ TRVIS was calculated strictly for the spectral range of 400–700 nm, the same window as
MU02b and MA05, and almost the same as MU02 (380–700 nm). The other evaluated models, however,
used slightly different spectral ranges although all are considered within the visible domain. For instance,
some of them include some portion of the near-UV (in the range 300–400 nm) or near-IR (700–750 nm). To
evaluate the impact of such difference in wavelengths on TRVIS, simulations by HydroLight (Mobley & Sund-
man, 2008) were carried out with Chl as 0.05, 0.5, and 5 mg m23 (following the default Case-1 model in
HydroLight) for the upper 50 m. It is found that the differences between TRVIS(400–700) and TRVIS(300–750)
were very small (�6%) for low Chl (�0.5 mg m23) in the whole water column, with TRVIS(400–700) generally
greater than TRVIS(300–750) due, in general, to higher absorption coefficients in the 350–400 and 700–
750 nm spectral windows. It is thus clear that the difference in spectral ranges has limited effect on the
comparison of model performances. Separately, the contribution of solar radiation in the 350–400 nm win-
dow to EVIS(0) is small (<�2%) while the contribution in the 700–750 nm window to EVIS(0) is accounted for
in other models (e.g., Lee et al., 2005), thus using the 400–700 nm window to represent TRVIS will not affect
the heating effect in dynamic models as long as the entire short-wave solar radiation is accounted for
properly.

For Chl-based models, despite the moderate performance exhibited by the MA05 (UAPD � 40%), it should
be taken into account that when Chl is higher, errors higher than 100% could be expected (TRVIS values can
be �1–30%). This model showed sensitivity to Chl as its performance was reduced in waters with
Chl> 1 mg m23, at least for the data evaluated here. Fundamentally, the MA05 model was designed for
Case-1 waters, where Chl is the primary driving force of the change of optical properties. Lee and Hu (2006)
showed that likely only 60% of the global oceans follows strictly the bio-optical relationships of Case-1
waters, whose spatial variation changes seasonally and their boundaries are difficult to establish. In particu-
lar, the definition of Case-1 waters is not based on latitude and/or longitude, rather it is based on optical
dependences; thus, it is difficult to know if a water body belongs to Case-1 based on remote sensing reflec-
tance (Lee & Hu, 2006). As a result, if models are sensitive to Chl, it may not be appropriate to use such mod-
els in some regions or at some seasons, for example, during phytoplankton blooms. This might also be a
reason why Manizza et al. (2005) suggested improving their TRVIS model by including bio-optical parameter-
izations for each phytoplankton functional type (PFT). However, as demonstrated in Lee et al. (2005) and
here, the propagation of light depends on bulk optical properties, and such properties can be well esti-
mated from radiometric measurements (Lee et al., 2005; Werdell et al., 2013) and there is no need to know
a priori biological properties of the environment, such as the dominant PFT.

Errors or uncertainties in getting Chl and IOPs from Rrs are beyond the scope of this study. Here the focus is
on the Rrs to TRVIS system because inputs for TRVIS could only be obtained on a global scale from Rrs. In par-
ticular, at least for the Chl-based models, it is the same Chl derived from Rrs used to estimate TRVIS of the
various water bodies; and further it is the same Rrs used as input for the TRVIS estimations of all models.
Note that for satellite ocean color remote sensing, Rrs is a first-order product of the targeted water bodies.
Although it is not clear if Chl or IOPs derived from Rrs are highly accurate, our results exhibited that the
direct use of optical properties, a and bb, reduces the uncertainties in the estimated TRVIS. Further, although
some uncertainties are associated with the estimation of the IOPs (Lee et al., 2010; Werdell et al., 2013), the
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results here show that the TRVIS estimated with the IOPs model can be accurate to within �20% when it is
derived simply from Rrs. Shulman et al. (2017) recently showed that coupled errors between the estimation
of TRVIS and EVIS(0) can significantly affect the modeled heat exchange in the water column. Thus, an accu-
rate TRVIS model will reduce one of the error sources in ocean dynamic and climate models.

Note that the model comparison performed here considered only in situ information, without any interac-
tion with the atmosphere. However, for satellite ocean color remote sensing, the atmosphere contributes
around 90% of the total signal at the top of the atmosphere (IOCCG, 2010). Thus, atmospheric correction is
an essential step in obtaining accurate Rrs and then IOPs. Even for the model based on IOPs, it is necessary
to evaluate EVIS(z) when all the input parameters are derived from satellite ocean color measurements.

6. Conclusions

Modeling the propagation of visible solar radiation (TRVIS) in the upper water column is important for the
study of heating and photosynthesis of the global oceans, whereas the input for such models has to be
derived from ocean color remote sensing. Here, for the first time, TRVIS was evaluated with data measured
in both oceanic and coastal waters. It was found that the best performing model is based on inherent opti-
cal properties (IOPs05), where a mean uncertainty of �23% is obtained for TRVIS in a range of 0.1–100%,
and this model is not sensitive to water types. The models (MA94 and MA05) showed the lowest uncertain-
ties among the Chl-based models and presented differences in performance depending on the Chl concen-
tration, indicating high dependence on the relationships between optical properties and Chl. Because TRVIS

is an optical property, the results here further advocate the adoption of bulk IOPs for accurate estimation of
TRVIS, which could have significant impact on the modeling of heating and photosynthesis in the upper
water column.
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